This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc B instead of zero. (Contributed by NM, 5-Jan-2005) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfindsg2.1 | |- ( x = suc B -> ( ph <-> ps ) ) |
|
| tfindsg2.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| tfindsg2.3 | |- ( x = suc y -> ( ph <-> th ) ) |
||
| tfindsg2.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| tfindsg2.5 | |- ( B e. On -> ps ) |
||
| tfindsg2.6 | |- ( ( y e. On /\ B e. y ) -> ( ch -> th ) ) |
||
| tfindsg2.7 | |- ( ( Lim x /\ B e. x ) -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) |
||
| Assertion | tfindsg2 | |- ( ( A e. On /\ B e. A ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfindsg2.1 | |- ( x = suc B -> ( ph <-> ps ) ) |
|
| 2 | tfindsg2.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | tfindsg2.3 | |- ( x = suc y -> ( ph <-> th ) ) |
|
| 4 | tfindsg2.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | tfindsg2.5 | |- ( B e. On -> ps ) |
|
| 6 | tfindsg2.6 | |- ( ( y e. On /\ B e. y ) -> ( ch -> th ) ) |
|
| 7 | tfindsg2.7 | |- ( ( Lim x /\ B e. x ) -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) |
|
| 8 | onelon | |- ( ( A e. On /\ B e. A ) -> B e. On ) |
|
| 9 | onsucb | |- ( B e. On <-> suc B e. On ) |
|
| 10 | 8 9 | sylib | |- ( ( A e. On /\ B e. A ) -> suc B e. On ) |
| 11 | eloni | |- ( A e. On -> Ord A ) |
|
| 12 | ordsucss | |- ( Ord A -> ( B e. A -> suc B C_ A ) ) |
|
| 13 | 11 12 | syl | |- ( A e. On -> ( B e. A -> suc B C_ A ) ) |
| 14 | 13 | imp | |- ( ( A e. On /\ B e. A ) -> suc B C_ A ) |
| 15 | 9 5 | sylbir | |- ( suc B e. On -> ps ) |
| 16 | eloni | |- ( y e. On -> Ord y ) |
|
| 17 | ordelsuc | |- ( ( B e. On /\ Ord y ) -> ( B e. y <-> suc B C_ y ) ) |
|
| 18 | 16 17 | sylan2 | |- ( ( B e. On /\ y e. On ) -> ( B e. y <-> suc B C_ y ) ) |
| 19 | 18 | ancoms | |- ( ( y e. On /\ B e. On ) -> ( B e. y <-> suc B C_ y ) ) |
| 20 | 6 | ex | |- ( y e. On -> ( B e. y -> ( ch -> th ) ) ) |
| 21 | 20 | adantr | |- ( ( y e. On /\ B e. On ) -> ( B e. y -> ( ch -> th ) ) ) |
| 22 | 19 21 | sylbird | |- ( ( y e. On /\ B e. On ) -> ( suc B C_ y -> ( ch -> th ) ) ) |
| 23 | 9 22 | sylan2br | |- ( ( y e. On /\ suc B e. On ) -> ( suc B C_ y -> ( ch -> th ) ) ) |
| 24 | 23 | imp | |- ( ( ( y e. On /\ suc B e. On ) /\ suc B C_ y ) -> ( ch -> th ) ) |
| 25 | 7 | ex | |- ( Lim x -> ( B e. x -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) ) |
| 26 | 25 | adantr | |- ( ( Lim x /\ B e. On ) -> ( B e. x -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) ) |
| 27 | vex | |- x e. _V |
|
| 28 | limelon | |- ( ( x e. _V /\ Lim x ) -> x e. On ) |
|
| 29 | 27 28 | mpan | |- ( Lim x -> x e. On ) |
| 30 | eloni | |- ( x e. On -> Ord x ) |
|
| 31 | ordelsuc | |- ( ( B e. On /\ Ord x ) -> ( B e. x <-> suc B C_ x ) ) |
|
| 32 | 30 31 | sylan2 | |- ( ( B e. On /\ x e. On ) -> ( B e. x <-> suc B C_ x ) ) |
| 33 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 34 | 33 16 | syl | |- ( ( x e. On /\ y e. x ) -> Ord y ) |
| 35 | 34 17 | sylan2 | |- ( ( B e. On /\ ( x e. On /\ y e. x ) ) -> ( B e. y <-> suc B C_ y ) ) |
| 36 | 35 | anassrs | |- ( ( ( B e. On /\ x e. On ) /\ y e. x ) -> ( B e. y <-> suc B C_ y ) ) |
| 37 | 36 | imbi1d | |- ( ( ( B e. On /\ x e. On ) /\ y e. x ) -> ( ( B e. y -> ch ) <-> ( suc B C_ y -> ch ) ) ) |
| 38 | 37 | ralbidva | |- ( ( B e. On /\ x e. On ) -> ( A. y e. x ( B e. y -> ch ) <-> A. y e. x ( suc B C_ y -> ch ) ) ) |
| 39 | 38 | imbi1d | |- ( ( B e. On /\ x e. On ) -> ( ( A. y e. x ( B e. y -> ch ) -> ph ) <-> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) |
| 40 | 32 39 | imbi12d | |- ( ( B e. On /\ x e. On ) -> ( ( B e. x -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) <-> ( suc B C_ x -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) ) |
| 41 | 29 40 | sylan2 | |- ( ( B e. On /\ Lim x ) -> ( ( B e. x -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) <-> ( suc B C_ x -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) ) |
| 42 | 41 | ancoms | |- ( ( Lim x /\ B e. On ) -> ( ( B e. x -> ( A. y e. x ( B e. y -> ch ) -> ph ) ) <-> ( suc B C_ x -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) ) |
| 43 | 26 42 | mpbid | |- ( ( Lim x /\ B e. On ) -> ( suc B C_ x -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) |
| 44 | 9 43 | sylan2br | |- ( ( Lim x /\ suc B e. On ) -> ( suc B C_ x -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) ) |
| 45 | 44 | imp | |- ( ( ( Lim x /\ suc B e. On ) /\ suc B C_ x ) -> ( A. y e. x ( suc B C_ y -> ch ) -> ph ) ) |
| 46 | 1 2 3 4 15 24 45 | tfindsg | |- ( ( ( A e. On /\ suc B e. On ) /\ suc B C_ A ) -> ta ) |
| 47 | 46 | expl | |- ( A e. On -> ( ( suc B e. On /\ suc B C_ A ) -> ta ) ) |
| 48 | 47 | adantr | |- ( ( A e. On /\ B e. A ) -> ( ( suc B e. On /\ suc B C_ A ) -> ta ) ) |
| 49 | 10 14 48 | mp2and | |- ( ( A e. On /\ B e. A ) -> ta ) |