This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | symgfvne | |- ( ( F e. B /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | 1 2 | symgbasf1o | |- ( F e. B -> F : A -1-1-onto-> A ) |
| 4 | f1of1 | |- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
|
| 5 | eqeq2 | |- ( Z = ( F ` X ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
|
| 6 | 5 | eqcoms | |- ( ( F ` X ) = Z -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
| 7 | 6 | adantl | |- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z <-> ( F ` Y ) = ( F ` X ) ) ) |
| 8 | simp1 | |- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> F : A -1-1-> A ) |
|
| 9 | simp3 | |- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> Y e. A ) |
|
| 10 | simp2 | |- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> X e. A ) |
|
| 11 | f1veqaeq | |- ( ( F : A -1-1-> A /\ ( Y e. A /\ X e. A ) ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
|
| 12 | 8 9 10 11 | syl12anc | |- ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
| 13 | 12 | adantr | |- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = ( F ` X ) -> Y = X ) ) |
| 14 | 7 13 | sylbid | |- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( ( F ` Y ) = Z -> Y = X ) ) |
| 15 | 14 | necon3d | |- ( ( ( F : A -1-1-> A /\ X e. A /\ Y e. A ) /\ ( F ` X ) = Z ) -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) |
| 16 | 15 | 3exp1 | |- ( F : A -1-1-> A -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) |
| 17 | 3 4 16 | 3syl | |- ( F e. B -> ( X e. A -> ( Y e. A -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) ) ) |
| 18 | 17 | 3imp | |- ( ( F e. B /\ X e. A /\ Y e. A ) -> ( ( F ` X ) = Z -> ( Y =/= X -> ( F ` Y ) =/= Z ) ) ) |