This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgfvne | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | symgbasf1o | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 4 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 –1-1→ 𝐴 ) | |
| 5 | eqeq2 | ⊢ ( 𝑍 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 6 | 5 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 8 | simp1 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐴 ) | |
| 9 | simp3 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) | |
| 10 | simp2 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) | |
| 11 | f1veqaeq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ ( 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) | |
| 12 | 8 9 10 11 | syl12anc | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) |
| 14 | 7 13 | sylbid | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑍 → 𝑌 = 𝑋 ) ) |
| 15 | 14 | necon3d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) = 𝑍 ) → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) |
| 16 | 15 | 3exp1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐴 → ( 𝑋 ∈ 𝐴 → ( 𝑌 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) ) ) |
| 17 | 3 4 16 | 3syl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝑋 ∈ 𝐴 → ( 𝑌 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) ) ) |
| 18 | 17 | 3imp | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 → ( 𝑌 ≠ 𝑋 → ( 𝐹 ‘ 𝑌 ) ≠ 𝑍 ) ) ) |