This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
| Assertion | symgfixf1 | |- ( K e. N -> H : Q -1-1-> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
| 5 | 1 2 3 4 | symgfixf | |- ( K e. N -> H : Q --> S ) |
| 6 | 4 | fvtresfn | |- ( g e. Q -> ( H ` g ) = ( g |` ( N \ { K } ) ) ) |
| 7 | 4 | fvtresfn | |- ( p e. Q -> ( H ` p ) = ( p |` ( N \ { K } ) ) ) |
| 8 | 6 7 | eqeqan12d | |- ( ( g e. Q /\ p e. Q ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) |
| 9 | 8 | adantl | |- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) <-> ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) ) ) |
| 10 | 1 2 | symgfixelq | |- ( g e. _V -> ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) ) |
| 11 | 10 | elv | |- ( g e. Q <-> ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) ) |
| 12 | 1 2 | symgfixelq | |- ( p e. _V -> ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) |
| 13 | 12 | elv | |- ( p e. Q <-> ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) |
| 14 | 11 13 | anbi12i | |- ( ( g e. Q /\ p e. Q ) <-> ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) |
| 15 | f1ofn | |- ( g : N -1-1-onto-> N -> g Fn N ) |
|
| 16 | 15 | adantr | |- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g Fn N ) |
| 17 | f1ofn | |- ( p : N -1-1-onto-> N -> p Fn N ) |
|
| 18 | 17 | adantr | |- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p Fn N ) |
| 19 | 16 18 | anim12i | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g Fn N /\ p Fn N ) ) |
| 20 | difss | |- ( N \ { K } ) C_ N |
|
| 21 | 19 20 | jctir | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) |
| 22 | 21 | adantl | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) ) |
| 23 | fvreseq | |- ( ( ( g Fn N /\ p Fn N ) /\ ( N \ { K } ) C_ N ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) <-> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) ) |
| 25 | f1of | |- ( g : N -1-1-onto-> N -> g : N --> N ) |
|
| 26 | 25 | adantr | |- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> g : N --> N ) |
| 27 | f1of | |- ( p : N -1-1-onto-> N -> p : N --> N ) |
|
| 28 | 27 | adantr | |- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> p : N --> N ) |
| 29 | fdm | |- ( g : N --> N -> dom g = N ) |
|
| 30 | fdm | |- ( p : N --> N -> dom p = N ) |
|
| 31 | 29 30 | anim12i | |- ( ( g : N --> N /\ p : N --> N ) -> ( dom g = N /\ dom p = N ) ) |
| 32 | 26 28 31 | syl2an | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( dom g = N /\ dom p = N ) ) |
| 33 | eqtr3 | |- ( ( dom g = N /\ dom p = N ) -> dom g = dom p ) |
|
| 34 | 32 33 | syl | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = dom p ) |
| 35 | 34 | ad2antlr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = dom p ) |
| 36 | simpr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) |
|
| 37 | eqtr3 | |- ( ( ( g ` K ) = K /\ ( p ` K ) = K ) -> ( g ` K ) = ( p ` K ) ) |
|
| 38 | 37 | ad2ant2l | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( g ` K ) = ( p ` K ) ) |
| 39 | 38 | ad2antlr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g ` K ) = ( p ` K ) ) |
| 40 | fveq2 | |- ( i = K -> ( g ` i ) = ( g ` K ) ) |
|
| 41 | fveq2 | |- ( i = K -> ( p ` i ) = ( p ` K ) ) |
|
| 42 | 40 41 | eqeq12d | |- ( i = K -> ( ( g ` i ) = ( p ` i ) <-> ( g ` K ) = ( p ` K ) ) ) |
| 43 | 42 | ralunsn | |- ( K e. N -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 44 | 43 | adantr | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 45 | 44 | adantr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) <-> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) /\ ( g ` K ) = ( p ` K ) ) ) ) |
| 46 | 36 39 45 | mpbir2and | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. ( ( N \ { K } ) u. { K } ) ( g ` i ) = ( p ` i ) ) |
| 47 | f1odm | |- ( g : N -1-1-onto-> N -> dom g = N ) |
|
| 48 | 47 | adantr | |- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> dom g = N ) |
| 49 | 48 | adantr | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> dom g = N ) |
| 50 | difsnid | |- ( K e. N -> ( ( N \ { K } ) u. { K } ) = N ) |
|
| 51 | 50 | eqcomd | |- ( K e. N -> N = ( ( N \ { K } ) u. { K } ) ) |
| 52 | 49 51 | sylan9eqr | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) |
| 53 | 52 | adantr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> dom g = ( ( N \ { K } ) u. { K } ) ) |
| 54 | 46 53 | raleqtrrdv | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> A. i e. dom g ( g ` i ) = ( p ` i ) ) |
| 55 | f1ofun | |- ( g : N -1-1-onto-> N -> Fun g ) |
|
| 56 | 55 | adantr | |- ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) -> Fun g ) |
| 57 | f1ofun | |- ( p : N -1-1-onto-> N -> Fun p ) |
|
| 58 | 57 | adantr | |- ( ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) -> Fun p ) |
| 59 | 56 58 | anim12i | |- ( ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) -> ( Fun g /\ Fun p ) ) |
| 60 | 59 | ad2antlr | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( Fun g /\ Fun p ) ) |
| 61 | eqfunfv | |- ( ( Fun g /\ Fun p ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> ( g = p <-> ( dom g = dom p /\ A. i e. dom g ( g ` i ) = ( p ` i ) ) ) ) |
| 63 | 35 54 62 | mpbir2and | |- ( ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) /\ A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) ) -> g = p ) |
| 64 | 63 | ex | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( A. i e. ( N \ { K } ) ( g ` i ) = ( p ` i ) -> g = p ) ) |
| 65 | 24 64 | sylbid | |- ( ( K e. N /\ ( ( g : N -1-1-onto-> N /\ ( g ` K ) = K ) /\ ( p : N -1-1-onto-> N /\ ( p ` K ) = K ) ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) |
| 66 | 14 65 | sylan2b | |- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( g |` ( N \ { K } ) ) = ( p |` ( N \ { K } ) ) -> g = p ) ) |
| 67 | 9 66 | sylbid | |- ( ( K e. N /\ ( g e. Q /\ p e. Q ) ) -> ( ( H ` g ) = ( H ` p ) -> g = p ) ) |
| 68 | 67 | ralrimivva | |- ( K e. N -> A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) |
| 69 | dff13 | |- ( H : Q -1-1-> S <-> ( H : Q --> S /\ A. g e. Q A. p e. Q ( ( H ` g ) = ( H ` p ) -> g = p ) ) ) |
|
| 70 | 5 68 69 | sylanbrc | |- ( K e. N -> H : Q -1-1-> S ) |