This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming ax-reg , an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dford2 | |- ( Ord A <-> ( Tr A /\ A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
| 2 | zfregfr | |- _E Fr A |
|
| 3 | dfwe2 | |- ( _E We A <-> ( _E Fr A /\ A. x e. A A. y e. A ( x _E y \/ x = y \/ y _E x ) ) ) |
|
| 4 | 2 3 | mpbiran | |- ( _E We A <-> A. x e. A A. y e. A ( x _E y \/ x = y \/ y _E x ) ) |
| 5 | epel | |- ( x _E y <-> x e. y ) |
|
| 6 | biid | |- ( x = y <-> x = y ) |
|
| 7 | epel | |- ( y _E x <-> y e. x ) |
|
| 8 | 5 6 7 | 3orbi123i | |- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
| 9 | 8 | 2ralbii | |- ( A. x e. A A. y e. A ( x _E y \/ x = y \/ y _E x ) <-> A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ) |
| 10 | 4 9 | bitri | |- ( _E We A <-> A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ) |
| 11 | 10 | anbi2i | |- ( ( Tr A /\ _E We A ) <-> ( Tr A /\ A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ) ) |
| 12 | 1 11 | bitri | |- ( Ord A <-> ( Tr A /\ A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ) ) |