This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrecd.1 | |- ( ph -> A e. CC ) |
|
| subrecd.2 | |- ( ph -> B e. CC ) |
||
| subrecd.3 | |- ( ph -> A =/= 0 ) |
||
| subrecd.4 | |- ( ph -> B =/= 0 ) |
||
| Assertion | subrecd | |- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrecd.1 | |- ( ph -> A e. CC ) |
|
| 2 | subrecd.2 | |- ( ph -> B e. CC ) |
|
| 3 | subrecd.3 | |- ( ph -> A =/= 0 ) |
|
| 4 | subrecd.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 6 | 5 1 5 2 3 4 | divsubdivd | |- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) ) |
| 7 | 2 | mullidd | |- ( ph -> ( 1 x. B ) = B ) |
| 8 | 1 | mullidd | |- ( ph -> ( 1 x. A ) = A ) |
| 9 | 7 8 | oveq12d | |- ( ph -> ( ( 1 x. B ) - ( 1 x. A ) ) = ( B - A ) ) |
| 10 | 9 | oveq1d | |- ( ph -> ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
| 11 | 6 10 | eqtrd | |- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |