This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrecd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| subrecd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subrecd.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| subrecd.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| Assertion | subrecd | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrecd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | subrecd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subrecd.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 4 | subrecd.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 6 | 5 1 5 2 3 4 | divsubdivd | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) / ( 𝐴 · 𝐵 ) ) ) |
| 7 | 2 | mullidd | ⊢ ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 ) |
| 8 | 1 | mullidd | ⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
| 9 | 7 8 | oveq12d | ⊢ ( 𝜑 → ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 10 | 9 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) / ( 𝐴 · 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |
| 11 | 6 10 | eqtrd | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |