This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtracting a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sub1cncf.1 | |- F = ( x e. CC |-> ( x - A ) ) |
|
| Assertion | sub1cncf | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sub1cncf.1 | |- F = ( x e. CC |-> ( x - A ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 4 | 3 | a1i | |- ( A e. CC -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 5 | eqid | |- ( x e. CC |-> x ) = ( x e. CC |-> x ) |
|
| 6 | 5 | idcncf | |- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
| 7 | 6 | a1i | |- ( A e. CC -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
| 8 | ssid | |- CC C_ CC |
|
| 9 | cncfmptc | |- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
|
| 10 | 8 8 9 | mp3an23 | |- ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
| 11 | 2 4 7 10 | cncfmpt2f | |- ( A e. CC -> ( x e. CC |-> ( x - A ) ) e. ( CC -cn-> CC ) ) |
| 12 | 1 11 | eqeltrid | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |