This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stdbdmet.1 | |- D = ( x e. X , y e. X |-> if ( ( x C y ) <_ R , ( x C y ) , R ) ) |
|
| Assertion | stdbdmetval | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( A D B ) = if ( ( A C B ) <_ R , ( A C B ) , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdbdmet.1 | |- D = ( x e. X , y e. X |-> if ( ( x C y ) <_ R , ( x C y ) , R ) ) |
|
| 2 | ovex | |- ( A C B ) e. _V |
|
| 3 | ifexg | |- ( ( ( A C B ) e. _V /\ R e. V ) -> if ( ( A C B ) <_ R , ( A C B ) , R ) e. _V ) |
|
| 4 | 2 3 | mpan | |- ( R e. V -> if ( ( A C B ) <_ R , ( A C B ) , R ) e. _V ) |
| 5 | oveq12 | |- ( ( x = A /\ y = B ) -> ( x C y ) = ( A C B ) ) |
|
| 6 | 5 | breq1d | |- ( ( x = A /\ y = B ) -> ( ( x C y ) <_ R <-> ( A C B ) <_ R ) ) |
| 7 | 6 5 | ifbieq1d | |- ( ( x = A /\ y = B ) -> if ( ( x C y ) <_ R , ( x C y ) , R ) = if ( ( A C B ) <_ R , ( A C B ) , R ) ) |
| 8 | 7 1 | ovmpoga | |- ( ( A e. X /\ B e. X /\ if ( ( A C B ) <_ R , ( A C B ) , R ) e. _V ) -> ( A D B ) = if ( ( A C B ) <_ R , ( A C B ) , R ) ) |
| 9 | 4 8 | syl3an3 | |- ( ( A e. X /\ B e. X /\ R e. V ) -> ( A D B ) = if ( ( A C B ) <_ R , ( A C B ) , R ) ) |
| 10 | 9 | 3comr | |- ( ( R e. V /\ A e. X /\ B e. X ) -> ( A D B ) = if ( ( A C B ) <_ R , ( A C B ) , R ) ) |