This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of ordered pair abstraction subclass and implication. Version of ssopab2b with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Dec-1996) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssopab2bw | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } <-> A. x A. y ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 2 | nfopab1 | |- F/_ x { <. x , y >. | ps } |
|
| 3 | 1 2 | nfss | |- F/ x { <. x , y >. | ph } C_ { <. x , y >. | ps } |
| 4 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 5 | nfopab2 | |- F/_ y { <. x , y >. | ps } |
|
| 6 | 4 5 | nfss | |- F/ y { <. x , y >. | ph } C_ { <. x , y >. | ps } |
| 7 | ssel | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } -> ( <. x , y >. e. { <. x , y >. | ph } -> <. x , y >. e. { <. x , y >. | ps } ) ) |
|
| 8 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 9 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ps } <-> ps ) |
|
| 10 | 7 8 9 | 3imtr3g | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } -> ( ph -> ps ) ) |
| 11 | 6 10 | alrimi | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } -> A. y ( ph -> ps ) ) |
| 12 | 3 11 | alrimi | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } -> A. x A. y ( ph -> ps ) ) |
| 13 | ssopab2 | |- ( A. x A. y ( ph -> ps ) -> { <. x , y >. | ph } C_ { <. x , y >. | ps } ) |
|
| 14 | 12 13 | impbii | |- ( { <. x , y >. | ph } C_ { <. x , y >. | ps } <-> A. x A. y ( ph -> ps ) ) |