This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssblex | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> R e. RR+ ) |
|
| 2 | 1 | rphalfcld | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( R / 2 ) e. RR+ ) |
| 3 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> S e. RR+ ) |
|
| 4 | 2 3 | ifcld | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) e. RR+ ) |
| 5 | 4 | rpred | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) e. RR ) |
| 6 | 2 | rpred | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( R / 2 ) e. RR ) |
| 7 | 1 | rpred | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> R e. RR ) |
| 8 | 3 | rpred | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> S e. RR ) |
| 9 | min1 | |- ( ( ( R / 2 ) e. RR /\ S e. RR ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) <_ ( R / 2 ) ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) <_ ( R / 2 ) ) |
| 11 | 1 | rpgt0d | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> 0 < R ) |
| 12 | halfpos | |- ( R e. RR -> ( 0 < R <-> ( R / 2 ) < R ) ) |
|
| 13 | 7 12 | syl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( 0 < R <-> ( R / 2 ) < R ) ) |
| 14 | 11 13 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( R / 2 ) < R ) |
| 15 | 5 6 7 10 14 | lelttrd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) < R ) |
| 16 | simpl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( D e. ( *Met ` X ) /\ P e. X ) ) |
|
| 17 | 4 | rpxrd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) e. RR* ) |
| 18 | 3 | rpxrd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> S e. RR* ) |
| 19 | min2 | |- ( ( ( R / 2 ) e. RR /\ S e. RR ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) <_ S ) |
|
| 20 | 6 8 19 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) <_ S ) |
| 21 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) e. RR* /\ S e. RR* ) /\ if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) <_ S ) -> ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) C_ ( P ( ball ` D ) S ) ) |
|
| 22 | 16 17 18 20 21 | syl121anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) C_ ( P ( ball ` D ) S ) ) |
| 23 | breq1 | |- ( x = if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) -> ( x < R <-> if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) < R ) ) |
|
| 24 | oveq2 | |- ( x = if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) -> ( P ( ball ` D ) x ) = ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) ) |
|
| 25 | 24 | sseq1d | |- ( x = if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) -> ( ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) S ) <-> ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) C_ ( P ( ball ` D ) S ) ) ) |
| 26 | 23 25 | anbi12d | |- ( x = if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) -> ( ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) S ) ) <-> ( if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) < R /\ ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) C_ ( P ( ball ` D ) S ) ) ) ) |
| 27 | 26 | rspcev | |- ( ( if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) e. RR+ /\ ( if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) < R /\ ( P ( ball ` D ) if ( ( R / 2 ) <_ S , ( R / 2 ) , S ) ) C_ ( P ( ball ` D ) S ) ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) S ) ) ) |
| 28 | 4 15 22 27 | syl12anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR+ /\ S e. RR+ ) ) -> E. x e. RR+ ( x < R /\ ( P ( ball ` D ) x ) C_ ( P ( ball ` D ) S ) ) ) |