This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfpos | |- ( A e. RR -> ( 0 < A <-> ( A / 2 ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpos2 | |- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) |
|
| 2 | rehalfcl | |- ( A e. RR -> ( A / 2 ) e. RR ) |
|
| 3 | 2 2 | ltaddposd | |- ( A e. RR -> ( 0 < ( A / 2 ) <-> ( A / 2 ) < ( ( A / 2 ) + ( A / 2 ) ) ) ) |
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | 2halves | |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
| 7 | 6 | breq2d | |- ( A e. RR -> ( ( A / 2 ) < ( ( A / 2 ) + ( A / 2 ) ) <-> ( A / 2 ) < A ) ) |
| 8 | 1 3 7 | 3bitrd | |- ( A e. RR -> ( 0 < A <-> ( A / 2 ) < A ) ) |