This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proof of ax-8 that does not rely on ax-8 . It employs df-in to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Since the nature of this result is unclear, usage of this theorem is discouraged, and this method should not be applied to eliminate axiom dependencies. (Contributed by GG, 1-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | in-ax8 | |- ( x = y -> ( x e. z -> y e. z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 | |- ( x = y -> ( x = w -> y = w ) ) |
|
| 2 | ax12v2 | |- ( x = w -> ( ( x e. t /\ x e. t ) -> A. x ( x = w -> ( x e. t /\ x e. t ) ) ) ) |
|
| 3 | 2 | imp | |- ( ( x = w /\ ( x e. t /\ x e. t ) ) -> A. x ( x = w -> ( x e. t /\ x e. t ) ) ) |
| 4 | sb6 | |- ( [ w / x ] ( x e. t /\ x e. t ) <-> A. x ( x = w -> ( x e. t /\ x e. t ) ) ) |
|
| 5 | df-in | |- ( t i^i t ) = { x | ( x e. t /\ x e. t ) } |
|
| 6 | df-in | |- ( t i^i t ) = { y | ( y e. t /\ y e. t ) } |
|
| 7 | 5 6 | eqtr3i | |- { x | ( x e. t /\ x e. t ) } = { y | ( y e. t /\ y e. t ) } |
| 8 | dfcleq | |- ( { x | ( x e. t /\ x e. t ) } = { y | ( y e. t /\ y e. t ) } <-> A. w ( w e. { x | ( x e. t /\ x e. t ) } <-> w e. { y | ( y e. t /\ y e. t ) } ) ) |
|
| 9 | 7 8 | mpbi | |- A. w ( w e. { x | ( x e. t /\ x e. t ) } <-> w e. { y | ( y e. t /\ y e. t ) } ) |
| 10 | 9 | spi | |- ( w e. { x | ( x e. t /\ x e. t ) } <-> w e. { y | ( y e. t /\ y e. t ) } ) |
| 11 | df-clab | |- ( w e. { x | ( x e. t /\ x e. t ) } <-> [ w / x ] ( x e. t /\ x e. t ) ) |
|
| 12 | df-clab | |- ( w e. { y | ( y e. t /\ y e. t ) } <-> [ w / y ] ( y e. t /\ y e. t ) ) |
|
| 13 | 10 11 12 | 3bitr3i | |- ( [ w / x ] ( x e. t /\ x e. t ) <-> [ w / y ] ( y e. t /\ y e. t ) ) |
| 14 | 4 13 | bitr3i | |- ( A. x ( x = w -> ( x e. t /\ x e. t ) ) <-> [ w / y ] ( y e. t /\ y e. t ) ) |
| 15 | sb6 | |- ( [ w / y ] ( y e. t /\ y e. t ) <-> A. y ( y = w -> ( y e. t /\ y e. t ) ) ) |
|
| 16 | 14 15 | sylbb | |- ( A. x ( x = w -> ( x e. t /\ x e. t ) ) -> A. y ( y = w -> ( y e. t /\ y e. t ) ) ) |
| 17 | sp | |- ( A. y ( y = w -> ( y e. t /\ y e. t ) ) -> ( y = w -> ( y e. t /\ y e. t ) ) ) |
|
| 18 | 3 16 17 | 3syl | |- ( ( x = w /\ ( x e. t /\ x e. t ) ) -> ( y = w -> ( y e. t /\ y e. t ) ) ) |
| 19 | 18 | ex | |- ( x = w -> ( ( x e. t /\ x e. t ) -> ( y = w -> ( y e. t /\ y e. t ) ) ) ) |
| 20 | 19 | com23 | |- ( x = w -> ( y = w -> ( ( x e. t /\ x e. t ) -> ( y e. t /\ y e. t ) ) ) ) |
| 21 | 1 20 | sylcom | |- ( x = y -> ( x = w -> ( ( x e. t /\ x e. t ) -> ( y e. t /\ y e. t ) ) ) ) |
| 22 | 21 | com12 | |- ( x = w -> ( x = y -> ( ( x e. t /\ x e. t ) -> ( y e. t /\ y e. t ) ) ) ) |
| 23 | 22 | equcoms | |- ( w = x -> ( x = y -> ( ( x e. t /\ x e. t ) -> ( y e. t /\ y e. t ) ) ) ) |
| 24 | ax6ev | |- E. w w = x |
|
| 25 | 23 24 | exlimiiv | |- ( x = y -> ( ( x e. t /\ x e. t ) -> ( y e. t /\ y e. t ) ) ) |
| 26 | pm4.24 | |- ( x e. t <-> ( x e. t /\ x e. t ) ) |
|
| 27 | pm4.24 | |- ( y e. t <-> ( y e. t /\ y e. t ) ) |
|
| 28 | 25 26 27 | 3imtr4g | |- ( x = y -> ( x e. t -> y e. t ) ) |
| 29 | ax9 | |- ( z = t -> ( x e. z -> x e. t ) ) |
|
| 30 | 29 | equcoms | |- ( t = z -> ( x e. z -> x e. t ) ) |
| 31 | ax9 | |- ( t = z -> ( y e. t -> y e. z ) ) |
|
| 32 | 30 31 | imim12d | |- ( t = z -> ( ( x e. t -> y e. t ) -> ( x e. z -> y e. z ) ) ) |
| 33 | 28 32 | syl5 | |- ( t = z -> ( x = y -> ( x e. z -> y e. z ) ) ) |
| 34 | ax6ev | |- E. t t = z |
|
| 35 | 33 34 | exlimiiv | |- ( x = y -> ( x e. z -> y e. z ) ) |