This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| sralem.1 | |- E = Slot ( E ` ndx ) |
||
| sralem.2 | |- ( Scalar ` ndx ) =/= ( E ` ndx ) |
||
| sralem.3 | |- ( .s ` ndx ) =/= ( E ` ndx ) |
||
| sralem.4 | |- ( .i ` ndx ) =/= ( E ` ndx ) |
||
| Assertion | sralem | |- ( ph -> ( E ` W ) = ( E ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | srapart.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 3 | sralem.1 | |- E = Slot ( E ` ndx ) |
|
| 4 | sralem.2 | |- ( Scalar ` ndx ) =/= ( E ` ndx ) |
|
| 5 | sralem.3 | |- ( .s ` ndx ) =/= ( E ` ndx ) |
|
| 6 | sralem.4 | |- ( .i ` ndx ) =/= ( E ` ndx ) |
|
| 7 | 4 | necomi | |- ( E ` ndx ) =/= ( Scalar ` ndx ) |
| 8 | 3 7 | setsnid | |- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) |
| 9 | 5 | necomi | |- ( E ` ndx ) =/= ( .s ` ndx ) |
| 10 | 3 9 | setsnid | |- ( E ` ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) ) = ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
| 11 | 6 | necomi | |- ( E ` ndx ) =/= ( .i ` ndx ) |
| 12 | 3 11 | setsnid | |- ( E ` ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 13 | 8 10 12 | 3eqtri | |- ( E ` W ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 14 | 1 | adantl | |- ( ( W e. _V /\ ph ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 15 | sraval | |- ( ( W e. _V /\ S C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
|
| 16 | 2 15 | sylan2 | |- ( ( W e. _V /\ ph ) -> ( ( subringAlg ` W ) ` S ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 17 | 14 16 | eqtrd | |- ( ( W e. _V /\ ph ) -> A = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
| 18 | 17 | fveq2d | |- ( ( W e. _V /\ ph ) -> ( E ` A ) = ( E ` ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s S ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) ) |
| 19 | 13 18 | eqtr4id | |- ( ( W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
| 20 | 3 | str0 | |- (/) = ( E ` (/) ) |
| 21 | fvprc | |- ( -. W e. _V -> ( E ` W ) = (/) ) |
|
| 22 | 21 | adantr | |- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = (/) ) |
| 23 | fv2prc | |- ( -. W e. _V -> ( ( subringAlg ` W ) ` S ) = (/) ) |
|
| 24 | 1 23 | sylan9eqr | |- ( ( -. W e. _V /\ ph ) -> A = (/) ) |
| 25 | 24 | fveq2d | |- ( ( -. W e. _V /\ ph ) -> ( E ` A ) = ( E ` (/) ) ) |
| 26 | 20 22 25 | 3eqtr4a | |- ( ( -. W e. _V /\ ph ) -> ( E ` W ) = ( E ` A ) ) |
| 27 | 19 26 | pm2.61ian | |- ( ph -> ( E ` W ) = ( E ` A ) ) |