This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of one end of an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snunioo1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( ( A (,) B ) u. ( A [,] A ) ) = ( ( A [,] A ) u. ( A (,) B ) ) |
|
| 2 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( A [,] A ) = { A } ) |
| 4 | 3 | uneq2d | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( A [,] A ) ) = ( ( A (,) B ) u. { A } ) ) |
| 5 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) |
|
| 6 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) |
|
| 7 | xrleid | |- ( A e. RR* -> A <_ A ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A <_ A ) |
| 9 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) |
|
| 10 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 11 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 12 | xrltnle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
|
| 13 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 14 | xrlelttr | |- ( ( w e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( w <_ A /\ A < B ) -> w < B ) ) |
|
| 15 | simpl1 | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A e. RR* ) |
|
| 16 | simpl3 | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> w e. RR* ) |
|
| 17 | simprr | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A < w ) |
|
| 18 | 15 16 17 | xrltled | |- ( ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) /\ ( A <_ A /\ A < w ) ) -> A <_ w ) |
| 19 | 18 | ex | |- ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( A <_ A /\ A < w ) -> A <_ w ) ) |
| 20 | 10 11 12 13 14 19 | ixxun | |- ( ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ A < B ) ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) |
| 21 | 5 5 6 8 9 20 | syl32anc | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) |
| 22 | 1 4 21 | 3eqtr3a | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |