This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sniota | |- ( E! x ph -> { x | ph } = { ( iota x ph ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 | |- F/ x E! x ph |
|
| 2 | nfab1 | |- F/_ x { x | ph } |
|
| 3 | nfiota1 | |- F/_ x ( iota x ph ) |
|
| 4 | 3 | nfsn | |- F/_ x { ( iota x ph ) } |
| 5 | iota1 | |- ( E! x ph -> ( ph <-> ( iota x ph ) = x ) ) |
|
| 6 | eqcom | |- ( ( iota x ph ) = x <-> x = ( iota x ph ) ) |
|
| 7 | 5 6 | bitrdi | |- ( E! x ph -> ( ph <-> x = ( iota x ph ) ) ) |
| 8 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 9 | velsn | |- ( x e. { ( iota x ph ) } <-> x = ( iota x ph ) ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( E! x ph -> ( x e. { x | ph } <-> x e. { ( iota x ph ) } ) ) |
| 11 | 1 2 4 10 | eqrd | |- ( E! x ph -> { x | ph } = { ( iota x ph ) } ) |