This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fonex.1 | |- B e/ _V |
|
| fonex.2 | |- F : A -onto-> B |
||
| Assertion | fonex | |- A e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fonex.1 | |- B e/ _V |
|
| 2 | fonex.2 | |- F : A -onto-> B |
|
| 3 | 1 | neli | |- -. B e. _V |
| 4 | fofun | |- ( F : A -onto-> B -> Fun F ) |
|
| 5 | 2 4 | ax-mp | |- Fun F |
| 6 | funrnex | |- ( dom F e. _V -> ( Fun F -> ran F e. _V ) ) |
|
| 7 | 5 6 | mpi | |- ( dom F e. _V -> ran F e. _V ) |
| 8 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 9 | 2 8 | ax-mp | |- F Fn A |
| 10 | 9 | fndmi | |- dom F = A |
| 11 | 10 | eleq1i | |- ( dom F e. _V <-> A e. _V ) |
| 12 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 13 | 2 12 | ax-mp | |- ran F = B |
| 14 | 13 | eleq1i | |- ( ran F e. _V <-> B e. _V ) |
| 15 | 7 11 14 | 3imtr3i | |- ( A e. _V -> B e. _V ) |
| 16 | 3 15 | mto | |- -. A e. _V |
| 17 | 16 | nelir | |- A e/ _V |