This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftidt2 | |- ( F shift 0 ) = ( F |` CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | subid1 | |- ( x e. CC -> ( x - 0 ) = x ) |
|
| 3 | 2 | breq1d | |- ( x e. CC -> ( ( x - 0 ) F y <-> x F y ) ) |
| 4 | 3 | pm5.32i | |- ( ( x e. CC /\ ( x - 0 ) F y ) <-> ( x e. CC /\ x F y ) ) |
| 5 | 4 | opabbii | |- { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } = { <. x , y >. | ( x e. CC /\ x F y ) } |
| 6 | 0cn | |- 0 e. CC |
|
| 7 | 1 | shftfval | |- ( 0 e. CC -> ( F shift 0 ) = { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } ) |
| 8 | 6 7 | ax-mp | |- ( F shift 0 ) = { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } |
| 9 | dfres2 | |- ( F |` CC ) = { <. x , y >. | ( x e. CC /\ x F y ) } |
|
| 10 | 5 8 9 | 3eqtr4i | |- ( F shift 0 ) = ( F |` CC ) |