This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftidt2 | ⊢ ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | subid1 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) | |
| 3 | 2 | breq1d | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 − 0 ) 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 4 | 3 | pm5.32i | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) } |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | 1 | shftfval | ⊢ ( 0 ∈ ℂ → ( 𝐹 shift 0 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } ) |
| 8 | 6 7 | ax-mp | ⊢ ( 𝐹 shift 0 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } |
| 9 | dfres2 | ⊢ ( 𝐹 ↾ ℂ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) } | |
| 10 | 5 8 9 | 3eqtr4i | ⊢ ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ ) |