This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set is an element of some other set. See elALT for a shorter proof using more axioms, and see elALT2 for a proof that uses ax-9 and ax-pow instead of ax-pr . (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011) Use ax-pr instead of ax-9 and ax-pow . (Revised by BTernaryTau, 2-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el | |- E. y x e. y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pr | |- E. y A. z ( ( z = x \/ z = x ) -> z e. y ) |
|
| 2 | pm4.25 | |- ( z = x <-> ( z = x \/ z = x ) ) |
|
| 3 | 2 | imbi1i | |- ( ( z = x -> z e. y ) <-> ( ( z = x \/ z = x ) -> z e. y ) ) |
| 4 | 3 | albii | |- ( A. z ( z = x -> z e. y ) <-> A. z ( ( z = x \/ z = x ) -> z e. y ) ) |
| 5 | elequ1 | |- ( z = x -> ( z e. y <-> x e. y ) ) |
|
| 6 | 5 | equsalvw | |- ( A. z ( z = x -> z e. y ) <-> x e. y ) |
| 7 | 4 6 | bitr3i | |- ( A. z ( ( z = x \/ z = x ) -> z e. y ) <-> x e. y ) |
| 8 | 7 | exbii | |- ( E. y A. z ( ( z = x \/ z = x ) -> z e. y ) <-> E. y x e. y ) |
| 9 | 1 8 | mpbi | |- E. y x e. y |