This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002) Generalize from the proof of elALT . (Revised by BJ, 3-Apr-2019) Avoid ax-sep , ax-nul , ax-pow . (Revised by BTernaryTau, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sels | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝐴 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 𝐴 ∈ 𝑥 ) ) |
| 3 | el | ⊢ ∃ 𝑥 𝑦 ∈ 𝑥 | |
| 4 | 2 3 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝐴 ∈ 𝑥 ) |