This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sectfn | |- ( C e. Cat -> ( Sect ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) |
|
| 2 | ovex | |- ( x ( Hom ` C ) y ) e. _V |
|
| 3 | ovex | |- ( y ( Hom ` C ) x ) e. _V |
|
| 4 | 2 3 | xpex | |- ( ( x ( Hom ` C ) y ) X. ( y ( Hom ` C ) x ) ) e. _V |
| 5 | opabssxp | |- { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } C_ ( ( x ( Hom ` C ) y ) X. ( y ( Hom ` C ) x ) ) |
|
| 6 | 4 5 | ssexi | |- { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } e. _V |
| 7 | 1 6 | fnmpoi | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 10 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 11 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 12 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 13 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 14 | 8 9 10 11 12 13 | sectffval | |- ( C e. Cat -> ( Sect ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) ) |
| 15 | 14 | fneq1d | |- ( C e. Cat -> ( ( Sect ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 16 | 7 15 | mpbiri | |- ( C e. Cat -> ( Sect ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |