This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomsdomcardi | |- ( A ~< ( card ` B ) -> A ~< B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdom0 | |- -. A ~< (/) |
|
| 2 | ndmfv | |- ( -. B e. dom card -> ( card ` B ) = (/) ) |
|
| 3 | 2 | breq2d | |- ( -. B e. dom card -> ( A ~< ( card ` B ) <-> A ~< (/) ) ) |
| 4 | 1 3 | mtbiri | |- ( -. B e. dom card -> -. A ~< ( card ` B ) ) |
| 5 | 4 | con4i | |- ( A ~< ( card ` B ) -> B e. dom card ) |
| 6 | cardid2 | |- ( B e. dom card -> ( card ` B ) ~~ B ) |
|
| 7 | 5 6 | syl | |- ( A ~< ( card ` B ) -> ( card ` B ) ~~ B ) |
| 8 | sdomentr | |- ( ( A ~< ( card ` B ) /\ ( card ` B ) ~~ B ) -> A ~< B ) |
|
| 9 | 7 8 | mpdan | |- ( A ~< ( card ` B ) -> A ~< B ) |