This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute substitution over implication. (Contributed by NM, 14-May-1993) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbi1 | |- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | |- ( [ y / x ] ( ph -> ps ) <-> A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) ) |
|
| 2 | ax-2 | |- ( ( x = z -> ( ph -> ps ) ) -> ( ( x = z -> ph ) -> ( x = z -> ps ) ) ) |
|
| 3 | 2 | al2imi | |- ( A. x ( x = z -> ( ph -> ps ) ) -> ( A. x ( x = z -> ph ) -> A. x ( x = z -> ps ) ) ) |
| 4 | 3 | imim3i | |- ( ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( ( z = y -> A. x ( x = z -> ph ) ) -> ( z = y -> A. x ( x = z -> ps ) ) ) ) |
| 5 | 4 | al2imi | |- ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( A. z ( z = y -> A. x ( x = z -> ph ) ) -> A. z ( z = y -> A. x ( x = z -> ps ) ) ) ) |
| 6 | dfsb | |- ( [ y / x ] ph <-> A. z ( z = y -> A. x ( x = z -> ph ) ) ) |
|
| 7 | dfsb | |- ( [ y / x ] ps <-> A. z ( z = y -> A. x ( x = z -> ps ) ) ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( A. z ( z = y -> A. x ( x = z -> ( ph -> ps ) ) ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
| 9 | 1 8 | sylbi | |- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |