This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcie3s.a | |- A = ( E ` W ) |
|
| sbcie3s.b | |- B = ( F ` W ) |
||
| sbcie3s.c | |- C = ( G ` W ) |
||
| sbcie3s.1 | |- ( ( a = A /\ b = B /\ c = C ) -> ( ph <-> ps ) ) |
||
| Assertion | sbcie3s | |- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. [. ( G ` w ) / c ]. ps <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie3s.a | |- A = ( E ` W ) |
|
| 2 | sbcie3s.b | |- B = ( F ` W ) |
|
| 3 | sbcie3s.c | |- C = ( G ` W ) |
|
| 4 | sbcie3s.1 | |- ( ( a = A /\ b = B /\ c = C ) -> ( ph <-> ps ) ) |
|
| 5 | fvexd | |- ( w = W -> ( E ` w ) e. _V ) |
|
| 6 | fvexd | |- ( ( w = W /\ a = ( E ` w ) ) -> ( F ` w ) e. _V ) |
|
| 7 | fvexd | |- ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) -> ( G ` w ) e. _V ) |
|
| 8 | simpllr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = ( E ` w ) ) |
|
| 9 | fveq2 | |- ( w = W -> ( E ` w ) = ( E ` W ) ) |
|
| 10 | 9 | ad3antrrr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( E ` w ) = ( E ` W ) ) |
| 11 | 8 10 | eqtrd | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = ( E ` W ) ) |
| 12 | 11 1 | eqtr4di | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> a = A ) |
| 13 | simplr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = ( F ` w ) ) |
|
| 14 | fveq2 | |- ( w = W -> ( F ` w ) = ( F ` W ) ) |
|
| 15 | 14 | ad3antrrr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( F ` w ) = ( F ` W ) ) |
| 16 | 13 15 | eqtrd | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = ( F ` W ) ) |
| 17 | 16 2 | eqtr4di | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> b = B ) |
| 18 | simpr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = ( G ` w ) ) |
|
| 19 | fveq2 | |- ( w = W -> ( G ` w ) = ( G ` W ) ) |
|
| 20 | 19 | ad3antrrr | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( G ` w ) = ( G ` W ) ) |
| 21 | 18 20 | eqtrd | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = ( G ` W ) ) |
| 22 | 21 3 | eqtr4di | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> c = C ) |
| 23 | 12 17 22 4 | syl3anc | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( ph <-> ps ) ) |
| 24 | 23 | bicomd | |- ( ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) /\ c = ( G ` w ) ) -> ( ps <-> ph ) ) |
| 25 | 7 24 | sbcied | |- ( ( ( w = W /\ a = ( E ` w ) ) /\ b = ( F ` w ) ) -> ( [. ( G ` w ) / c ]. ps <-> ph ) ) |
| 26 | 6 25 | sbcied | |- ( ( w = W /\ a = ( E ` w ) ) -> ( [. ( F ` w ) / b ]. [. ( G ` w ) / c ]. ps <-> ph ) ) |
| 27 | 5 26 | sbcied | |- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. [. ( G ` w ) / c ]. ps <-> ph ) ) |