This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcnestgfw when possible. (Contributed by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcnestgf | |- ( ( A e. V /\ A. y F/ x ph ) -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq | |- ( z = A -> ( [. z / x ]. [. B / y ]. ph <-> [. A / x ]. [. B / y ]. ph ) ) |
|
| 2 | csbeq1 | |- ( z = A -> [_ z / x ]_ B = [_ A / x ]_ B ) |
|
| 3 | 2 | sbceq1d | |- ( z = A -> ( [. [_ z / x ]_ B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
| 4 | 1 3 | bibi12d | |- ( z = A -> ( ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) <-> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) |
| 5 | 4 | imbi2d | |- ( z = A -> ( ( A. y F/ x ph -> ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) <-> ( A. y F/ x ph -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) ) |
| 6 | vex | |- z e. _V |
|
| 7 | 6 | a1i | |- ( A. y F/ x ph -> z e. _V ) |
| 8 | csbeq1a | |- ( x = z -> B = [_ z / x ]_ B ) |
|
| 9 | 8 | sbceq1d | |- ( x = z -> ( [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
| 10 | 9 | adantl | |- ( ( A. y F/ x ph /\ x = z ) -> ( [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
| 11 | nfnf1 | |- F/ x F/ x ph |
|
| 12 | 11 | nfal | |- F/ x A. y F/ x ph |
| 13 | nfa1 | |- F/ y A. y F/ x ph |
|
| 14 | nfcsb1v | |- F/_ x [_ z / x ]_ B |
|
| 15 | 14 | a1i | |- ( A. y F/ x ph -> F/_ x [_ z / x ]_ B ) |
| 16 | sp | |- ( A. y F/ x ph -> F/ x ph ) |
|
| 17 | 13 15 16 | nfsbcd | |- ( A. y F/ x ph -> F/ x [. [_ z / x ]_ B / y ]. ph ) |
| 18 | 7 10 12 17 | sbciedf | |- ( A. y F/ x ph -> ( [. z / x ]. [. B / y ]. ph <-> [. [_ z / x ]_ B / y ]. ph ) ) |
| 19 | 5 18 | vtoclg | |- ( A e. V -> ( A. y F/ x ph -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) ) |
| 20 | 19 | imp | |- ( ( A e. V /\ A. y F/ x ph ) -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |