This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variable substitution in description binder. Compare sb8eu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 18-Mar-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sb8iota.1 | |- F/ y ph |
|
| Assertion | sb8iota | |- ( iota x ph ) = ( iota y [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8iota.1 | |- F/ y ph |
|
| 2 | nfv | |- F/ w ( ph <-> x = z ) |
|
| 3 | 2 | sb8 | |- ( A. x ( ph <-> x = z ) <-> A. w [ w / x ] ( ph <-> x = z ) ) |
| 4 | sbbi | |- ( [ w / x ] ( ph <-> x = z ) <-> ( [ w / x ] ph <-> [ w / x ] x = z ) ) |
|
| 5 | 1 | nfsb | |- F/ y [ w / x ] ph |
| 6 | equsb3 | |- ( [ w / x ] x = z <-> w = z ) |
|
| 7 | nfv | |- F/ y w = z |
|
| 8 | 6 7 | nfxfr | |- F/ y [ w / x ] x = z |
| 9 | 5 8 | nfbi | |- F/ y ( [ w / x ] ph <-> [ w / x ] x = z ) |
| 10 | 4 9 | nfxfr | |- F/ y [ w / x ] ( ph <-> x = z ) |
| 11 | nfv | |- F/ w [ y / x ] ( ph <-> x = z ) |
|
| 12 | sbequ | |- ( w = y -> ( [ w / x ] ( ph <-> x = z ) <-> [ y / x ] ( ph <-> x = z ) ) ) |
|
| 13 | 10 11 12 | cbvalv1 | |- ( A. w [ w / x ] ( ph <-> x = z ) <-> A. y [ y / x ] ( ph <-> x = z ) ) |
| 14 | equsb3 | |- ( [ y / x ] x = z <-> y = z ) |
|
| 15 | 14 | sblbis | |- ( [ y / x ] ( ph <-> x = z ) <-> ( [ y / x ] ph <-> y = z ) ) |
| 16 | 15 | albii | |- ( A. y [ y / x ] ( ph <-> x = z ) <-> A. y ( [ y / x ] ph <-> y = z ) ) |
| 17 | 3 13 16 | 3bitri | |- ( A. x ( ph <-> x = z ) <-> A. y ( [ y / x ] ph <-> y = z ) ) |
| 18 | 17 | abbii | |- { z | A. x ( ph <-> x = z ) } = { z | A. y ( [ y / x ] ph <-> y = z ) } |
| 19 | 18 | unieqi | |- U. { z | A. x ( ph <-> x = z ) } = U. { z | A. y ( [ y / x ] ph <-> y = z ) } |
| 20 | dfiota2 | |- ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) } |
|
| 21 | dfiota2 | |- ( iota y [ y / x ] ph ) = U. { z | A. y ( [ y / x ] ph <-> y = z ) } |
|
| 22 | 19 20 21 | 3eqtr4i | |- ( iota x ph ) = ( iota y [ y / x ] ph ) |