This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satf0 | |- ( (/) Sat (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |` suc _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | satf | |- ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) Sat (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } ) |` suc _om ) ) |
|
| 3 | 1 1 2 | mp2an | |- ( (/) Sat (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } ) |` suc _om ) |
| 4 | peano1 | |- (/) e. _om |
|
| 5 | 4 | ne0ii | |- _om =/= (/) |
| 6 | map0b | |- ( _om =/= (/) -> ( (/) ^m _om ) = (/) ) |
|
| 7 | 5 6 | ax-mp | |- ( (/) ^m _om ) = (/) |
| 8 | 7 | difeq1i | |- ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = ( (/) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 9 | 0dif | |- ( (/) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = (/) |
|
| 10 | 8 9 | eqtri | |- ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) = (/) |
| 11 | 10 | eqeq2i | |- ( y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> y = (/) ) |
| 12 | 11 | anbi2i | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) ) |
| 13 | 12 | rexbii | |- ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) ) |
| 14 | r19.41v | |- ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) <-> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) ) |
|
| 15 | 13 14 | bitri | |- ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) ) |
| 16 | 7 | rabeqi | |- { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = { a e. (/) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 17 | rab0 | |- { a e. (/) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = (/) |
|
| 18 | 16 17 | eqtri | |- { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } = (/) |
| 19 | 18 | eqeq2i | |- ( y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> y = (/) ) |
| 20 | 19 | anbi2i | |- ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ y = (/) ) ) |
| 21 | 20 | rexbii | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = (/) ) ) |
| 22 | r19.41v | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = (/) ) <-> ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) |
|
| 23 | 21 22 | bitri | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) |
| 24 | 15 23 | orbi12i | |- ( ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) \/ ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) ) |
| 25 | 24 | rexbii | |- ( E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. f ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) \/ ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) ) |
| 26 | andir | |- ( ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) <-> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) \/ ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) ) |
|
| 27 | 26 | bicomi | |- ( ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) \/ ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) <-> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) ) |
| 28 | 27 | rexbii | |- ( E. u e. f ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = (/) ) \/ ( E. i e. _om x = A.g i ( 1st ` u ) /\ y = (/) ) ) <-> E. u e. f ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) ) |
| 29 | r19.41v | |- ( E. u e. f ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) <-> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) ) |
|
| 30 | 25 28 29 | 3bitri | |- ( E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) /\ y = (/) ) ) |
| 31 | 30 | biancomi | |- ( E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 32 | 31 | opabbii | |- { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
| 33 | 32 | uneq2i | |- ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 34 | 33 | mpteq2i | |- ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 35 | 7 | rabeqi | |- { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } = { a e. (/) | ( a ` i ) (/) ( a ` j ) } |
| 36 | rab0 | |- { a e. (/) | ( a ` i ) (/) ( a ` j ) } = (/) |
|
| 37 | 35 36 | eqtri | |- { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } = (/) |
| 38 | 37 | eqeq2i | |- ( y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } <-> y = (/) ) |
| 39 | 38 | anbi2i | |- ( ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) <-> ( x = ( i e.g j ) /\ y = (/) ) ) |
| 40 | 39 | 2rexbii | |- ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) <-> E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = (/) ) ) |
| 41 | r19.41vv | |- ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = (/) ) <-> ( E. i e. _om E. j e. _om x = ( i e.g j ) /\ y = (/) ) ) |
|
| 42 | 40 41 | bitri | |- ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) <-> ( E. i e. _om E. j e. _om x = ( i e.g j ) /\ y = (/) ) ) |
| 43 | 42 | biancomi | |- ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) <-> ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 44 | 43 | opabbii | |- { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
| 45 | rdgeq12 | |- ( ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) /\ { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) -> rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } ) = rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ) |
|
| 46 | 34 44 45 | mp2an | |- rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } ) = rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |
| 47 | 46 | reseq1i | |- ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( (/) ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( (/) ^m _om ) | A. z e. (/) ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( (/) ^m _om ) | ( a ` i ) (/) ( a ` j ) } ) } ) |` suc _om ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |` suc _om ) |
| 48 | 3 47 | eqtri | |- ( (/) Sat (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |` suc _om ) |