This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s3tpop | |- ( ( A e. S /\ B e. S /\ C e. S ) -> <" A B C "> = { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s3 | |- <" A B C "> = ( <" A B "> ++ <" C "> ) |
|
| 2 | s2cl | |- ( ( A e. S /\ B e. S ) -> <" A B "> e. Word S ) |
|
| 3 | cats1un | |- ( ( <" A B "> e. Word S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
|
| 4 | 2 3 | stoic3 | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 5 | s2prop | |- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
|
| 6 | 5 | 3adant3 | |- ( ( A e. S /\ B e. S /\ C e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
| 7 | s2len | |- ( # ` <" A B "> ) = 2 |
|
| 8 | 7 | opeq1i | |- <. ( # ` <" A B "> ) , C >. = <. 2 , C >. |
| 9 | 8 | sneqi | |- { <. ( # ` <" A B "> ) , C >. } = { <. 2 , C >. } |
| 10 | 9 | a1i | |- ( ( A e. S /\ B e. S /\ C e. S ) -> { <. ( # ` <" A B "> ) , C >. } = { <. 2 , C >. } ) |
| 11 | 6 10 | uneq12d | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. } ) ) |
| 12 | df-tp | |- { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. } ) |
|
| 13 | 12 | eqcomi | |- ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. } ) = { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } |
| 14 | 13 | a1i | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. } ) = { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } ) |
| 15 | 4 11 14 | 3eqtrd | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } ) |
| 16 | 1 15 | eqtrid | |- ( ( A e. S /\ B e. S /\ C e. S ) -> <" A B C "> = { <. 0 , A >. , <. 1 , B >. , <. 2 , C >. } ) |