This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s3iunsndisj | |- ( B e. X -> Disj_ a e. Y U_ c e. ( Z \ { a } ) { <" a B c "> } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( a = d -> ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) |
|
| 2 | 1 | a1d | |- ( a = d -> ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) ) |
| 3 | eliun | |- ( s e. U_ c e. ( Z \ { a } ) { <" a B c "> } <-> E. c e. ( Z \ { a } ) s e. { <" a B c "> } ) |
|
| 4 | velsn | |- ( s e. { <" a B c "> } <-> s = <" a B c "> ) |
|
| 5 | eqeq1 | |- ( s = <" a B c "> -> ( s = <" d B e "> <-> <" a B c "> = <" d B e "> ) ) |
|
| 6 | 5 | adantl | |- ( ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) /\ s = <" a B c "> ) -> ( s = <" d B e "> <-> <" a B c "> = <" d B e "> ) ) |
| 7 | s3cli | |- <" a B c "> e. Word _V |
|
| 8 | elex | |- ( B e. X -> B e. _V ) |
|
| 9 | elex | |- ( d e. Y -> d e. _V ) |
|
| 10 | 9 | adantl | |- ( ( a e. Y /\ d e. Y ) -> d e. _V ) |
| 11 | 8 10 | anim12ci | |- ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( d e. _V /\ B e. _V ) ) |
| 12 | elex | |- ( e e. ( Z \ { d } ) -> e e. _V ) |
|
| 13 | 12 | adantl | |- ( ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) -> e e. _V ) |
| 14 | 11 13 | anim12i | |- ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) -> ( ( d e. _V /\ B e. _V ) /\ e e. _V ) ) |
| 15 | df-3an | |- ( ( d e. _V /\ B e. _V /\ e e. _V ) <-> ( ( d e. _V /\ B e. _V ) /\ e e. _V ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) -> ( d e. _V /\ B e. _V /\ e e. _V ) ) |
| 17 | eqwrds3 | |- ( ( <" a B c "> e. Word _V /\ ( d e. _V /\ B e. _V /\ e e. _V ) ) -> ( <" a B c "> = <" d B e "> <-> ( ( # ` <" a B c "> ) = 3 /\ ( ( <" a B c "> ` 0 ) = d /\ ( <" a B c "> ` 1 ) = B /\ ( <" a B c "> ` 2 ) = e ) ) ) ) |
|
| 18 | 7 16 17 | sylancr | |- ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) -> ( <" a B c "> = <" d B e "> <-> ( ( # ` <" a B c "> ) = 3 /\ ( ( <" a B c "> ` 0 ) = d /\ ( <" a B c "> ` 1 ) = B /\ ( <" a B c "> ` 2 ) = e ) ) ) ) |
| 19 | s3fv0 | |- ( a e. _V -> ( <" a B c "> ` 0 ) = a ) |
|
| 20 | 19 | elv | |- ( <" a B c "> ` 0 ) = a |
| 21 | simp1 | |- ( ( ( <" a B c "> ` 0 ) = d /\ ( <" a B c "> ` 1 ) = B /\ ( <" a B c "> ` 2 ) = e ) -> ( <" a B c "> ` 0 ) = d ) |
|
| 22 | 20 21 | eqtr3id | |- ( ( ( <" a B c "> ` 0 ) = d /\ ( <" a B c "> ` 1 ) = B /\ ( <" a B c "> ` 2 ) = e ) -> a = d ) |
| 23 | 22 | adantl | |- ( ( ( # ` <" a B c "> ) = 3 /\ ( ( <" a B c "> ` 0 ) = d /\ ( <" a B c "> ` 1 ) = B /\ ( <" a B c "> ` 2 ) = e ) ) -> a = d ) |
| 24 | 18 23 | biimtrdi | |- ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) -> ( <" a B c "> = <" d B e "> -> a = d ) ) |
| 25 | 24 | adantr | |- ( ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) /\ s = <" a B c "> ) -> ( <" a B c "> = <" d B e "> -> a = d ) ) |
| 26 | 6 25 | sylbid | |- ( ( ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) /\ s = <" a B c "> ) -> ( s = <" d B e "> -> a = d ) ) |
| 27 | 26 | ancoms | |- ( ( s = <" a B c "> /\ ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) ) -> ( s = <" d B e "> -> a = d ) ) |
| 28 | 27 | con3d | |- ( ( s = <" a B c "> /\ ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) /\ ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) ) ) -> ( -. a = d -> -. s = <" d B e "> ) ) |
| 29 | 28 | exp32 | |- ( s = <" a B c "> -> ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) -> ( -. a = d -> -. s = <" d B e "> ) ) ) ) |
| 30 | 29 | com14 | |- ( -. a = d -> ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) -> ( s = <" a B c "> -> -. s = <" d B e "> ) ) ) ) |
| 31 | 30 | imp | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( ( c e. ( Z \ { a } ) /\ e e. ( Z \ { d } ) ) -> ( s = <" a B c "> -> -. s = <" d B e "> ) ) ) |
| 32 | 31 | expd | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( c e. ( Z \ { a } ) -> ( e e. ( Z \ { d } ) -> ( s = <" a B c "> -> -. s = <" d B e "> ) ) ) ) |
| 33 | 32 | com34 | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( c e. ( Z \ { a } ) -> ( s = <" a B c "> -> ( e e. ( Z \ { d } ) -> -. s = <" d B e "> ) ) ) ) |
| 34 | 33 | imp | |- ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) -> ( s = <" a B c "> -> ( e e. ( Z \ { d } ) -> -. s = <" d B e "> ) ) ) |
| 35 | 4 34 | biimtrid | |- ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) -> ( s e. { <" a B c "> } -> ( e e. ( Z \ { d } ) -> -. s = <" d B e "> ) ) ) |
| 36 | 35 | imp | |- ( ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) /\ s e. { <" a B c "> } ) -> ( e e. ( Z \ { d } ) -> -. s = <" d B e "> ) ) |
| 37 | 36 | imp | |- ( ( ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) /\ s e. { <" a B c "> } ) /\ e e. ( Z \ { d } ) ) -> -. s = <" d B e "> ) |
| 38 | velsn | |- ( s e. { <" d B e "> } <-> s = <" d B e "> ) |
|
| 39 | 37 38 | sylnibr | |- ( ( ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) /\ s e. { <" a B c "> } ) /\ e e. ( Z \ { d } ) ) -> -. s e. { <" d B e "> } ) |
| 40 | 39 | nrexdv | |- ( ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) /\ s e. { <" a B c "> } ) -> -. E. e e. ( Z \ { d } ) s e. { <" d B e "> } ) |
| 41 | eliun | |- ( s e. U_ e e. ( Z \ { d } ) { <" d B e "> } <-> E. e e. ( Z \ { d } ) s e. { <" d B e "> } ) |
|
| 42 | 40 41 | sylnibr | |- ( ( ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) /\ c e. ( Z \ { a } ) ) /\ s e. { <" a B c "> } ) -> -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) |
| 43 | 42 | rexlimdva2 | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( E. c e. ( Z \ { a } ) s e. { <" a B c "> } -> -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) ) |
| 44 | 3 43 | biimtrid | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -> -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) ) |
| 45 | 44 | ralrimiv | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> A. s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) |
| 46 | eqidd | |- ( c = e -> d = d ) |
|
| 47 | eqidd | |- ( c = e -> B = B ) |
|
| 48 | id | |- ( c = e -> c = e ) |
|
| 49 | 46 47 48 | s3eqd | |- ( c = e -> <" d B c "> = <" d B e "> ) |
| 50 | 49 | sneqd | |- ( c = e -> { <" d B c "> } = { <" d B e "> } ) |
| 51 | 50 | cbviunv | |- U_ c e. ( Z \ { d } ) { <" d B c "> } = U_ e e. ( Z \ { d } ) { <" d B e "> } |
| 52 | 51 | eleq2i | |- ( s e. U_ c e. ( Z \ { d } ) { <" d B c "> } <-> s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) |
| 53 | 52 | notbii | |- ( -. s e. U_ c e. ( Z \ { d } ) { <" d B c "> } <-> -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) |
| 54 | 53 | ralbii | |- ( A. s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -. s e. U_ c e. ( Z \ { d } ) { <" d B c "> } <-> A. s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -. s e. U_ e e. ( Z \ { d } ) { <" d B e "> } ) |
| 55 | 45 54 | sylibr | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> A. s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -. s e. U_ c e. ( Z \ { d } ) { <" d B c "> } ) |
| 56 | disj | |- ( ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) <-> A. s e. U_ c e. ( Z \ { a } ) { <" a B c "> } -. s e. U_ c e. ( Z \ { d } ) { <" d B c "> } ) |
|
| 57 | 55 56 | sylibr | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) |
| 58 | 57 | olcd | |- ( ( -. a = d /\ ( B e. X /\ ( a e. Y /\ d e. Y ) ) ) -> ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) |
| 59 | 58 | ex | |- ( -. a = d -> ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) ) |
| 60 | 2 59 | pm2.61i | |- ( ( B e. X /\ ( a e. Y /\ d e. Y ) ) -> ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) |
| 61 | 60 | ralrimivva | |- ( B e. X -> A. a e. Y A. d e. Y ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) |
| 62 | sneq | |- ( a = d -> { a } = { d } ) |
|
| 63 | 62 | difeq2d | |- ( a = d -> ( Z \ { a } ) = ( Z \ { d } ) ) |
| 64 | id | |- ( a = d -> a = d ) |
|
| 65 | eqidd | |- ( a = d -> B = B ) |
|
| 66 | eqidd | |- ( a = d -> c = c ) |
|
| 67 | 64 65 66 | s3eqd | |- ( a = d -> <" a B c "> = <" d B c "> ) |
| 68 | 67 | sneqd | |- ( a = d -> { <" a B c "> } = { <" d B c "> } ) |
| 69 | 63 68 | disjiunb | |- ( Disj_ a e. Y U_ c e. ( Z \ { a } ) { <" a B c "> } <-> A. a e. Y A. d e. Y ( a = d \/ ( U_ c e. ( Z \ { a } ) { <" a B c "> } i^i U_ c e. ( Z \ { d } ) { <" d B c "> } ) = (/) ) ) |
| 70 | 61 69 | sylibr | |- ( B e. X -> Disj_ a e. Y U_ c e. ( Z \ { a } ) { <" a B c "> } ) |