This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed version of rspc . (Contributed by Andrew Salmon, 6-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspct.1 | |- F/ x ps |
|
| Assertion | rspct | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspct.1 | |- F/ x ps |
|
| 2 | df-ral | |- ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) |
|
| 3 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 4 | 3 | adantr | |- ( ( x = A /\ ( ph <-> ps ) ) -> ( x e. B <-> A e. B ) ) |
| 5 | simpr | |- ( ( x = A /\ ( ph <-> ps ) ) -> ( ph <-> ps ) ) |
|
| 6 | 4 5 | imbi12d | |- ( ( x = A /\ ( ph <-> ps ) ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) |
| 7 | 6 | ex | |- ( x = A -> ( ( ph <-> ps ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
| 8 | 7 | a2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
| 9 | 8 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
| 10 | nfv | |- F/ x A e. B |
|
| 11 | 10 1 | nfim | |- F/ x ( A e. B -> ps ) |
| 12 | nfcv | |- F/_ x A |
|
| 13 | 11 12 | spcgft | |- ( A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) |
| 14 | 9 13 | syl | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) |
| 15 | 2 14 | syl7bi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ( A e. B -> ps ) ) ) ) |
| 16 | 15 | com34 | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) ) |
| 17 | 16 | pm2.43d | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) |