This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnxrnres | ⊢ ran ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrn | ⊢ ran ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) } | |
| 2 | brres | ⊢ ( 𝑦 ∈ V → ( 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 5 | an12 | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ↔ ( 𝑢 𝑅 𝑥 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑆 𝑦 ) ) ) | |
| 6 | 4 5 | bitr4i | ⊢ ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) ) |
| 10 | 9 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) } |
| 11 | 1 10 | eqtri | ⊢ ran ( 𝑅 ⋉ ( 𝑆 ↾ 𝐴 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑆 𝑦 ) } |