This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn , this does not need any sethood assumptions on A and B .) (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvcnvsn | |- `' `' { <. A , B >. } = `' { <. B , A >. } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' `' { <. A , B >. } |
|
| 2 | relcnv | |- Rel `' { <. B , A >. } |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | opelcnv | |- ( <. x , y >. e. `' `' { <. A , B >. } <-> <. y , x >. e. `' { <. A , B >. } ) |
| 6 | ancom | |- ( ( x = A /\ y = B ) <-> ( y = B /\ x = A ) ) |
|
| 7 | 3 4 | opth | |- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
| 8 | 4 3 | opth | |- ( <. y , x >. = <. B , A >. <-> ( y = B /\ x = A ) ) |
| 9 | 6 7 8 | 3bitr4i | |- ( <. x , y >. = <. A , B >. <-> <. y , x >. = <. B , A >. ) |
| 10 | opex | |- <. x , y >. e. _V |
|
| 11 | 10 | elsn | |- ( <. x , y >. e. { <. A , B >. } <-> <. x , y >. = <. A , B >. ) |
| 12 | opex | |- <. y , x >. e. _V |
|
| 13 | 12 | elsn | |- ( <. y , x >. e. { <. B , A >. } <-> <. y , x >. = <. B , A >. ) |
| 14 | 9 11 13 | 3bitr4i | |- ( <. x , y >. e. { <. A , B >. } <-> <. y , x >. e. { <. B , A >. } ) |
| 15 | 4 3 | opelcnv | |- ( <. y , x >. e. `' { <. A , B >. } <-> <. x , y >. e. { <. A , B >. } ) |
| 16 | 3 4 | opelcnv | |- ( <. x , y >. e. `' { <. B , A >. } <-> <. y , x >. e. { <. B , A >. } ) |
| 17 | 14 15 16 | 3bitr4i | |- ( <. y , x >. e. `' { <. A , B >. } <-> <. x , y >. e. `' { <. B , A >. } ) |
| 18 | 5 17 | bitri | |- ( <. x , y >. e. `' `' { <. A , B >. } <-> <. x , y >. e. `' { <. B , A >. } ) |
| 19 | 1 2 18 | eqrelriiv | |- `' `' { <. A , B >. } = `' { <. B , A >. } |