This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unmnd.1 | |- H = ( 2nd ` R ) |
|
| Assertion | rngomndo | |- ( R e. RingOps -> H e. MndOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unmnd.1 | |- H = ( 2nd ` R ) |
|
| 2 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 3 | eqid | |- ran ( 1st ` R ) = ran ( 1st ` R ) |
|
| 4 | 2 1 3 | rngosm | |- ( R e. RingOps -> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) |
| 5 | 2 1 3 | rngoass | |- ( ( R e. RingOps /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
| 6 | 5 | ralrimivvva | |- ( R e. RingOps -> A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
| 7 | 2 1 3 | rngoi | |- ( R e. RingOps -> ( ( ( 1st ` R ) e. AbelOp /\ H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) /\ ( A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y ( 1st ` R ) z ) ) = ( ( x H y ) ( 1st ` R ) ( x H z ) ) /\ ( ( x ( 1st ` R ) y ) H z ) = ( ( x H z ) ( 1st ` R ) ( y H z ) ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 8 | 7 | simprrd | |- ( R e. RingOps -> E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) |
| 9 | 1 2 | rngorn1 | |- ( R e. RingOps -> ran ( 1st ` R ) = dom dom H ) |
| 10 | xpid11 | |- ( ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) <-> dom dom H = ran ( 1st ` R ) ) |
|
| 11 | 10 | biimpri | |- ( dom dom H = ran ( 1st ` R ) -> ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) ) |
| 12 | feq23 | |- ( ( ( dom dom H X. dom dom H ) = ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) /\ dom dom H = ran ( 1st ` R ) ) -> ( H : ( dom dom H X. dom dom H ) --> dom dom H <-> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) ) |
|
| 13 | 11 12 | mpancom | |- ( dom dom H = ran ( 1st ` R ) -> ( H : ( dom dom H X. dom dom H ) --> dom dom H <-> H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) ) ) |
| 14 | raleq | |- ( dom dom H = ran ( 1st ` R ) -> ( A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) |
|
| 15 | 14 | raleqbi1dv | |- ( dom dom H = ran ( 1st ` R ) -> ( A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) |
| 16 | 15 | raleqbi1dv | |- ( dom dom H = ran ( 1st ` R ) -> ( A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) <-> A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) ) ) |
| 17 | raleq | |- ( dom dom H = ran ( 1st ` R ) -> ( A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) <-> A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) |
|
| 18 | 17 | rexeqbi1dv | |- ( dom dom H = ran ( 1st ` R ) -> ( E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) <-> E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) |
| 19 | 13 16 18 | 3anbi123d | |- ( dom dom H = ran ( 1st ` R ) -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 20 | 19 | eqcoms | |- ( ran ( 1st ` R ) = dom dom H -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 21 | 9 20 | syl | |- ( R e. RingOps -> ( ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) <-> ( H : ( ran ( 1st ` R ) X. ran ( 1st ` R ) ) --> ran ( 1st ` R ) /\ A. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) A. z e. ran ( 1st ` R ) ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. ran ( 1st ` R ) A. y e. ran ( 1st ` R ) ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 22 | 4 6 8 21 | mpbir3and | |- ( R e. RingOps -> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) |
| 23 | fvex | |- ( 2nd ` R ) e. _V |
|
| 24 | eleq1 | |- ( H = ( 2nd ` R ) -> ( H e. _V <-> ( 2nd ` R ) e. _V ) ) |
|
| 25 | 23 24 | mpbiri | |- ( H = ( 2nd ` R ) -> H e. _V ) |
| 26 | eqid | |- dom dom H = dom dom H |
|
| 27 | 26 | ismndo1 | |- ( H e. _V -> ( H e. MndOp <-> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 28 | 1 25 27 | mp2b | |- ( H e. MndOp <-> ( H : ( dom dom H X. dom dom H ) --> dom dom H /\ A. x e. dom dom H A. y e. dom dom H A. z e. dom dom H ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ E. x e. dom dom H A. y e. dom dom H ( ( x H y ) = y /\ ( y H x ) = y ) ) ) |
| 29 | 22 28 | sylibr | |- ( R e. RingOps -> H e. MndOp ) |