This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngoablo2 | |- ( <. G , H >. e. RingOps -> G e. AbelOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( G RingOps H <-> <. G , H >. e. RingOps ) |
|
| 2 | relrngo | |- Rel RingOps |
|
| 3 | 2 | brrelex12i | |- ( G RingOps H -> ( G e. _V /\ H e. _V ) ) |
| 4 | op1stg | |- ( ( G e. _V /\ H e. _V ) -> ( 1st ` <. G , H >. ) = G ) |
|
| 5 | 3 4 | syl | |- ( G RingOps H -> ( 1st ` <. G , H >. ) = G ) |
| 6 | 1 5 | sylbir | |- ( <. G , H >. e. RingOps -> ( 1st ` <. G , H >. ) = G ) |
| 7 | eqid | |- ( 1st ` <. G , H >. ) = ( 1st ` <. G , H >. ) |
|
| 8 | 7 | rngoablo | |- ( <. G , H >. e. RingOps -> ( 1st ` <. G , H >. ) e. AbelOp ) |
| 9 | 6 8 | eqeltrrd | |- ( <. G , H >. e. RingOps -> G e. AbelOp ) |