This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngmgmbs4 | |- ( ( G : ( X X. X ) --> X /\ E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> ran G = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.12 | |- ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. x e. X E. u e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
|
| 2 | simpl | |- ( ( ( u G x ) = x /\ ( x G u ) = x ) -> ( u G x ) = x ) |
|
| 3 | 2 | eqcomd | |- ( ( ( u G x ) = x /\ ( x G u ) = x ) -> x = ( u G x ) ) |
| 4 | oveq2 | |- ( y = x -> ( u G y ) = ( u G x ) ) |
|
| 5 | 4 | rspceeqv | |- ( ( x e. X /\ x = ( u G x ) ) -> E. y e. X x = ( u G y ) ) |
| 6 | 5 | ex | |- ( x e. X -> ( x = ( u G x ) -> E. y e. X x = ( u G y ) ) ) |
| 7 | 3 6 | syl5 | |- ( x e. X -> ( ( ( u G x ) = x /\ ( x G u ) = x ) -> E. y e. X x = ( u G y ) ) ) |
| 8 | 7 | reximdv | |- ( x e. X -> ( E. u e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> E. u e. X E. y e. X x = ( u G y ) ) ) |
| 9 | 8 | ralimia | |- ( A. x e. X E. u e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. x e. X E. u e. X E. y e. X x = ( u G y ) ) |
| 10 | 1 9 | syl | |- ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. x e. X E. u e. X E. y e. X x = ( u G y ) ) |
| 11 | 10 | anim2i | |- ( ( G : ( X X. X ) --> X /\ E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> ( G : ( X X. X ) --> X /\ A. x e. X E. u e. X E. y e. X x = ( u G y ) ) ) |
| 12 | foov | |- ( G : ( X X. X ) -onto-> X <-> ( G : ( X X. X ) --> X /\ A. x e. X E. u e. X E. y e. X x = ( u G y ) ) ) |
|
| 13 | 11 12 | sylibr | |- ( ( G : ( X X. X ) --> X /\ E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> G : ( X X. X ) -onto-> X ) |
| 14 | forn | |- ( G : ( X X. X ) -onto-> X -> ran G = X ) |
|
| 15 | 13 14 | syl | |- ( ( G : ( X X. X ) --> X /\ E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> ran G = X ) |