This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimabs.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| rlimabs.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
||
| Assertion | rlimcj | |- ( ph -> ( k e. A |-> ( * ` B ) ) ~~>r ( * ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| 2 | rlimabs.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
|
| 3 | 1 2 | rlimmptrcl | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 4 | rlimcl | |- ( ( k e. A |-> B ) ~~>r C -> C e. CC ) |
|
| 5 | 2 4 | syl | |- ( ph -> C e. CC ) |
| 6 | cjf | |- * : CC --> CC |
|
| 7 | 6 | a1i | |- ( ph -> * : CC --> CC ) |
| 8 | cjcn2 | |- ( ( C e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` C ) ) ) < x ) ) |
|
| 9 | 5 8 | sylan | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` C ) ) ) < x ) ) |
| 10 | 3 5 2 7 9 | rlimcn1b | |- ( ph -> ( k e. A |-> ( * ` B ) ) ~~>r ( * ` C ) ) |