This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ) in the form of a substitution instance. Special case of riota2f . (Contributed by NM, 3-Mar-2013) (Proof shortened by Mario Carneiro, 6-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotasv2s.2 | |- D = ( iota_ x e. A A. y e. B ( ph -> x = C ) ) |
|
| Assertion | riotasv2s | |- ( ( A e. V /\ D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> D = [_ E / y ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv2s.2 | |- D = ( iota_ x e. A A. y e. B ( ph -> x = C ) ) |
|
| 2 | 3simpc | |- ( ( A e. V /\ D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) ) |
|
| 3 | simp1 | |- ( ( A e. V /\ D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> A e. V ) |
|
| 4 | nfra1 | |- F/ y A. y e. B ( ph -> x = C ) |
|
| 5 | nfcv | |- F/_ y A |
|
| 6 | 4 5 | nfriota | |- F/_ y ( iota_ x e. A A. y e. B ( ph -> x = C ) ) |
| 7 | 1 6 | nfcxfr | |- F/_ y D |
| 8 | 7 | nfel1 | |- F/ y D e. A |
| 9 | nfv | |- F/ y E e. B |
|
| 10 | nfsbc1v | |- F/ y [. E / y ]. ph |
|
| 11 | 9 10 | nfan | |- F/ y ( E e. B /\ [. E / y ]. ph ) |
| 12 | 8 11 | nfan | |- F/ y ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) |
| 13 | nfcsb1v | |- F/_ y [_ E / y ]_ C |
|
| 14 | 13 | a1i | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> F/_ y [_ E / y ]_ C ) |
| 15 | 10 | a1i | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> F/ y [. E / y ]. ph ) |
| 16 | 1 | a1i | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> D = ( iota_ x e. A A. y e. B ( ph -> x = C ) ) ) |
| 17 | sbceq1a | |- ( y = E -> ( ph <-> [. E / y ]. ph ) ) |
|
| 18 | 17 | adantl | |- ( ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) /\ y = E ) -> ( ph <-> [. E / y ]. ph ) ) |
| 19 | csbeq1a | |- ( y = E -> C = [_ E / y ]_ C ) |
|
| 20 | 19 | adantl | |- ( ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) /\ y = E ) -> C = [_ E / y ]_ C ) |
| 21 | simpl | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> D e. A ) |
|
| 22 | simprl | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> E e. B ) |
|
| 23 | simprr | |- ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> [. E / y ]. ph ) |
|
| 24 | 12 14 15 16 18 20 21 22 23 | riotasv2d | |- ( ( ( D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) /\ A e. V ) -> D = [_ E / y ]_ C ) |
| 25 | 2 3 24 | syl2anc | |- ( ( A e. V /\ D e. A /\ ( E e. B /\ [. E / y ]. ph ) ) -> D = [_ E / y ]_ C ) |