This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of Halmos p. 31. For part 1, see riesz1 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riesz2 | |- ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) |
|
| 2 | lnfncnbd | |- ( T e. LinFn -> ( T e. ContFn <-> ( normfn ` T ) e. RR ) ) |
|
| 3 | 2 | pm5.32i | |- ( ( T e. LinFn /\ T e. ContFn ) <-> ( T e. LinFn /\ ( normfn ` T ) e. RR ) ) |
| 4 | 1 3 | bitri | |- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ ( normfn ` T ) e. RR ) ) |
| 5 | riesz4 | |- ( T e. ( LinFn i^i ContFn ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) |
|
| 6 | 4 5 | sylbir | |- ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) |