This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Theorems about operators and functionals
riesz2
Metamath Proof Explorer
Description: Part 2 of the Riesz representation theorem for bounded linear
functionals. The value of a bounded linear functional corresponds to a
unique inner product. Part of Theorem 17.3 of Halmos p. 31. For part
1, see riesz1 . (Contributed by NM , 25-Apr-2006)
(New usage is discouraged.)
Ref
Expression
Assertion
riesz2
⊢ T ∈ LinFn ∧ norm fn ⁡ T ∈ ℝ → ∃! y ∈ ℋ ∀ x ∈ ℋ T ⁡ x = x ⋅ ih y
Proof
Step
Hyp
Ref
Expression
1
elin
⊢ T ∈ LinFn ∩ ContFn ↔ T ∈ LinFn ∧ T ∈ ContFn
2
lnfncnbd
⊢ T ∈ LinFn → T ∈ ContFn ↔ norm fn ⁡ T ∈ ℝ
3
2
pm5.32i
⊢ T ∈ LinFn ∧ T ∈ ContFn ↔ T ∈ LinFn ∧ norm fn ⁡ T ∈ ℝ
4
1 3
bitri
⊢ T ∈ LinFn ∩ ContFn ↔ T ∈ LinFn ∧ norm fn ⁡ T ∈ ℝ
5
riesz4
⊢ T ∈ LinFn ∩ ContFn → ∃! y ∈ ℋ ∀ x ∈ ℋ T ⁡ x = x ⋅ ih y
6
4 5
sylbir
⊢ T ∈ LinFn ∧ norm fn ⁡ T ∈ ℝ → ∃! y ∈ ℋ ∀ x ∈ ℋ T ⁡ x = x ⋅ ih y