This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
| Assertion | rexrab2 | |- ( E. x e. { y e. A | ph } ps <-> E. y e. A ( ph /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab2.1 | |- ( x = y -> ( ps <-> ch ) ) |
|
| 2 | df-rab | |- { y e. A | ph } = { y | ( y e. A /\ ph ) } |
|
| 3 | 2 | rexeqi | |- ( E. x e. { y e. A | ph } ps <-> E. x e. { y | ( y e. A /\ ph ) } ps ) |
| 4 | 1 | rexab2 | |- ( E. x e. { y | ( y e. A /\ ph ) } ps <-> E. y ( ( y e. A /\ ph ) /\ ch ) ) |
| 5 | anass | |- ( ( ( y e. A /\ ph ) /\ ch ) <-> ( y e. A /\ ( ph /\ ch ) ) ) |
|
| 6 | 5 | exbii | |- ( E. y ( ( y e. A /\ ph ) /\ ch ) <-> E. y ( y e. A /\ ( ph /\ ch ) ) ) |
| 7 | df-rex | |- ( E. y e. A ( ph /\ ch ) <-> E. y ( y e. A /\ ( ph /\ ch ) ) ) |
|
| 8 | 6 7 | bitr4i | |- ( E. y ( ( y e. A /\ ph ) /\ ch ) <-> E. y e. A ( ph /\ ch ) ) |
| 9 | 3 4 8 | 3bitri | |- ( E. x e. { y e. A | ph } ps <-> E. y e. A ( ph /\ ch ) ) |