This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reusv3.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
| reusv3.2 | |- ( y = z -> C = D ) |
||
| Assertion | reusv3i | |- ( E. x e. A A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 2 | reusv3.2 | |- ( y = z -> C = D ) |
|
| 3 | 2 | eqeq2d | |- ( y = z -> ( x = C <-> x = D ) ) |
| 4 | 1 3 | imbi12d | |- ( y = z -> ( ( ph -> x = C ) <-> ( ps -> x = D ) ) ) |
| 5 | 4 | cbvralvw | |- ( A. y e. B ( ph -> x = C ) <-> A. z e. B ( ps -> x = D ) ) |
| 6 | 5 | biimpi | |- ( A. y e. B ( ph -> x = C ) -> A. z e. B ( ps -> x = D ) ) |
| 7 | raaanv | |- ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) <-> ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) ) |
|
| 8 | anim12 | |- ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> ( x = C /\ x = D ) ) ) |
|
| 9 | eqtr2 | |- ( ( x = C /\ x = D ) -> C = D ) |
|
| 10 | 8 9 | syl6 | |- ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> C = D ) ) |
| 11 | 10 | 2ralimi | |- ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
| 12 | 7 11 | sylbir | |- ( ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
| 13 | 6 12 | mpdan | |- ( A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |
| 14 | 13 | rexlimivw | |- ( E. x e. A A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |