This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relopabi.1 | |- A = { <. x , y >. | ph } |
|
| Assertion | relopabiALT | |- Rel A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 | |- A = { <. x , y >. | ph } |
|
| 2 | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
|
| 3 | 1 2 | eqtri | |- A = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 4 | vex | |- x e. _V |
|
| 5 | vex | |- y e. _V |
|
| 6 | 4 5 | opelvv | |- <. x , y >. e. ( _V X. _V ) |
| 7 | eleq1 | |- ( z = <. x , y >. -> ( z e. ( _V X. _V ) <-> <. x , y >. e. ( _V X. _V ) ) ) |
|
| 8 | 6 7 | mpbiri | |- ( z = <. x , y >. -> z e. ( _V X. _V ) ) |
| 9 | 8 | adantr | |- ( ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) ) |
| 10 | 9 | exlimivv | |- ( E. x E. y ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) ) |
| 11 | 10 | abssi | |- { z | E. x E. y ( z = <. x , y >. /\ ph ) } C_ ( _V X. _V ) |
| 12 | 3 11 | eqsstri | |- A C_ ( _V X. _V ) |
| 13 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 14 | 12 13 | mpbir | |- Rel A |