This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relopabi.1 | ⊢ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| Assertion | relopabiALT | ⊢ Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 | ⊢ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 2 | df-opab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } | |
| 3 | 1 2 | eqtri | ⊢ 𝐴 = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 4 5 | opelvv | ⊢ 〈 𝑥 , 𝑦 〉 ∈ ( V × V ) |
| 7 | eleq1 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( V × V ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( V × V ) ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ ( V × V ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) → 𝑧 ∈ ( V × V ) ) |
| 10 | 9 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) → 𝑧 ∈ ( V × V ) ) |
| 11 | 10 | abssi | ⊢ { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } ⊆ ( V × V ) |
| 12 | 3 11 | eqsstri | ⊢ 𝐴 ⊆ ( V × V ) |
| 13 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 14 | 12 13 | mpbir | ⊢ Rel 𝐴 |