This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relopabi.1 | |- A = { <. x , y >. | ph } |
|
| Assertion | relopabi | |- Rel A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 | |- A = { <. x , y >. | ph } |
|
| 2 | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
|
| 3 | 1 2 | eqtri | |- A = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 4 | 3 | eqabri | |- ( z e. A <-> E. x E. y ( z = <. x , y >. /\ ph ) ) |
| 5 | simpl | |- ( ( z = <. x , y >. /\ ph ) -> z = <. x , y >. ) |
|
| 6 | 5 | 2eximi | |- ( E. x E. y ( z = <. x , y >. /\ ph ) -> E. x E. y z = <. x , y >. ) |
| 7 | 4 6 | sylbi | |- ( z e. A -> E. x E. y z = <. x , y >. ) |
| 8 | ax6evr | |- E. u y = u |
|
| 9 | pm3.21 | |- ( <. x , y >. = z -> ( y = u -> ( y = u /\ <. x , y >. = z ) ) ) |
|
| 10 | 9 | eximdv | |- ( <. x , y >. = z -> ( E. u y = u -> E. u ( y = u /\ <. x , y >. = z ) ) ) |
| 11 | 8 10 | mpi | |- ( <. x , y >. = z -> E. u ( y = u /\ <. x , y >. = z ) ) |
| 12 | opeq2 | |- ( y = u -> <. x , y >. = <. x , u >. ) |
|
| 13 | eqtr2 | |- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> <. x , u >. = z ) |
|
| 14 | 13 | eqcomd | |- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> z = <. x , u >. ) |
| 15 | 12 14 | sylan | |- ( ( y = u /\ <. x , y >. = z ) -> z = <. x , u >. ) |
| 16 | 15 | eximi | |- ( E. u ( y = u /\ <. x , y >. = z ) -> E. u z = <. x , u >. ) |
| 17 | 11 16 | syl | |- ( <. x , y >. = z -> E. u z = <. x , u >. ) |
| 18 | 17 | eqcoms | |- ( z = <. x , y >. -> E. u z = <. x , u >. ) |
| 19 | 18 | 2eximi | |- ( E. x E. y z = <. x , y >. -> E. x E. y E. u z = <. x , u >. ) |
| 20 | excomim | |- ( E. x E. y E. u z = <. x , u >. -> E. y E. x E. u z = <. x , u >. ) |
|
| 21 | 19 20 | syl | |- ( E. x E. y z = <. x , y >. -> E. y E. x E. u z = <. x , u >. ) |
| 22 | vex | |- x e. _V |
|
| 23 | vex | |- u e. _V |
|
| 24 | 22 23 | pm3.2i | |- ( x e. _V /\ u e. _V ) |
| 25 | 24 | jctr | |- ( z = <. x , u >. -> ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 26 | 25 | 2eximi | |- ( E. x E. u z = <. x , u >. -> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 27 | df-xp | |- ( _V X. _V ) = { <. x , u >. | ( x e. _V /\ u e. _V ) } |
|
| 28 | df-opab | |- { <. x , u >. | ( x e. _V /\ u e. _V ) } = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
|
| 29 | 27 28 | eqtri | |- ( _V X. _V ) = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
| 30 | 29 | eqabri | |- ( z e. ( _V X. _V ) <-> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 31 | 26 30 | sylibr | |- ( E. x E. u z = <. x , u >. -> z e. ( _V X. _V ) ) |
| 32 | 31 | eximi | |- ( E. y E. x E. u z = <. x , u >. -> E. y z e. ( _V X. _V ) ) |
| 33 | ax5e | |- ( E. y z e. ( _V X. _V ) -> z e. ( _V X. _V ) ) |
|
| 34 | 7 21 32 33 | 4syl | |- ( z e. A -> z e. ( _V X. _V ) ) |
| 35 | 34 | ssriv | |- A C_ ( _V X. _V ) |
| 36 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
| 37 | 35 36 | mpbir | |- Rel A |