This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogrn | |- ( A e. RR -> A e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | pipos | |- 0 < _pi |
|
| 3 | pire | |- _pi e. RR |
|
| 4 | lt0neg2 | |- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
|
| 5 | 3 4 | ax-mp | |- ( 0 < _pi <-> -u _pi < 0 ) |
| 6 | 2 5 | mpbi | |- -u _pi < 0 |
| 7 | reim0 | |- ( A e. RR -> ( Im ` A ) = 0 ) |
|
| 8 | 6 7 | breqtrrid | |- ( A e. RR -> -u _pi < ( Im ` A ) ) |
| 9 | 0re | |- 0 e. RR |
|
| 10 | 9 3 2 | ltleii | |- 0 <_ _pi |
| 11 | 7 10 | eqbrtrdi | |- ( A e. RR -> ( Im ` A ) <_ _pi ) |
| 12 | ellogrn | |- ( A e. ran log <-> ( A e. CC /\ -u _pi < ( Im ` A ) /\ ( Im ` A ) <_ _pi ) ) |
|
| 13 | 1 8 11 12 | syl3anbrc | |- ( A e. RR -> A e. ran log ) |