This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relmptopab.1 | |- F = ( x e. A |-> { <. y , z >. | ph } ) |
|
| Assertion | relmptopab | |- Rel ( F ` B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relmptopab.1 | |- F = ( x e. A |-> { <. y , z >. | ph } ) |
|
| 2 | 1 | fvmptss | |- ( A. x e. A { <. y , z >. | ph } C_ ( _V X. _V ) -> ( F ` B ) C_ ( _V X. _V ) ) |
| 3 | relopab | |- Rel { <. y , z >. | ph } |
|
| 4 | df-rel | |- ( Rel { <. y , z >. | ph } <-> { <. y , z >. | ph } C_ ( _V X. _V ) ) |
|
| 5 | 3 4 | mpbi | |- { <. y , z >. | ph } C_ ( _V X. _V ) |
| 6 | 5 | a1i | |- ( x e. A -> { <. y , z >. | ph } C_ ( _V X. _V ) ) |
| 7 | 2 6 | mprg | |- ( F ` B ) C_ ( _V X. _V ) |
| 8 | df-rel | |- ( Rel ( F ` B ) <-> ( F ` B ) C_ ( _V X. _V ) ) |
|
| 9 | 7 8 | mpbir | |- Rel ( F ` B ) |