This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real part of a division. Related to remul2 . (Contributed by David A. Wheeler, 10-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rediv | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( ( Re ` A ) / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) <-> ( A e. CC /\ ( B e. RR /\ B =/= 0 ) ) ) |
|
| 2 | 3anass | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) <-> ( A e. CC /\ ( B e. RR /\ B =/= 0 ) ) ) |
|
| 3 | 1 2 | bitr4i | |- ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) <-> ( A e. CC /\ B e. RR /\ B =/= 0 ) ) |
| 4 | rereccl | |- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
|
| 5 | 4 | anim1i | |- ( ( ( B e. RR /\ B =/= 0 ) /\ A e. CC ) -> ( ( 1 / B ) e. RR /\ A e. CC ) ) |
| 6 | 3 5 | sylbir | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( 1 / B ) e. RR /\ A e. CC ) ) |
| 7 | remul2 | |- ( ( ( 1 / B ) e. RR /\ A e. CC ) -> ( Re ` ( ( 1 / B ) x. A ) ) = ( ( 1 / B ) x. ( Re ` A ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( ( 1 / B ) x. A ) ) = ( ( 1 / B ) x. ( Re ` A ) ) ) |
| 9 | recn | |- ( B e. RR -> B e. CC ) |
|
| 10 | divrec2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( ( 1 / B ) x. A ) ) |
|
| 11 | 10 | fveq2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( Re ` ( ( 1 / B ) x. A ) ) ) |
| 12 | 9 11 | syl3an2 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( Re ` ( ( 1 / B ) x. A ) ) ) |
| 13 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 14 | 13 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 15 | 14 | 3ad2ant1 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` A ) e. CC ) |
| 16 | 9 | 3ad2ant2 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> B e. CC ) |
| 17 | simp3 | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> B =/= 0 ) |
|
| 18 | 15 16 17 | divrec2d | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( Re ` A ) / B ) = ( ( 1 / B ) x. ( Re ` A ) ) ) |
| 19 | 8 12 18 | 3eqtr4d | |- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` ( A / B ) ) = ( ( Re ` A ) / B ) ) |