This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ax-2 rederived from the Tarski-Bernays axiom system. Often tb-ax1 is replaced with this theorem to make a "standard" system. This is because this theorem is easier to work with, despite it being longer. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re1ax2 | |- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | re1ax2lem | |- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
|
| 2 | tb-ax1 | |- ( ( ph -> ( ph -> ch ) ) -> ( ( ( ph -> ch ) -> ch ) -> ( ph -> ch ) ) ) |
|
| 3 | tb-ax3 | |- ( ( ( ( ph -> ch ) -> ch ) -> ( ph -> ch ) ) -> ( ph -> ch ) ) |
|
| 4 | 2 3 | tbsyl | |- ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) |
| 5 | tb-ax1 | |- ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ph -> ch ) ) ) ) |
|
| 6 | re1ax2lem | |- ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ph -> ( ph -> ch ) ) ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) ) |
| 8 | tb-ax1 | |- ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) |
|
| 9 | re1ax2lem | |- ( ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) -> ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( ( ph -> ( ph -> ch ) ) -> ( ph -> ch ) ) -> ( ( ( ph -> ps ) -> ( ph -> ( ph -> ch ) ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) ) |
| 11 | 4 7 10 | mpsyl | |- ( ( ps -> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
| 12 | 1 11 | tbsyl | |- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |