This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for re1ax2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re1ax2lem | |- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tb-ax2 | |- ( ps -> ( ( ps -> ch ) -> ps ) ) |
|
| 2 | tb-ax1 | |- ( ( ( ps -> ch ) -> ps ) -> ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) ) |
|
| 3 | 1 2 | tbsyl | |- ( ps -> ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) ) |
| 4 | tb-ax1 | |- ( ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ( ( ps -> ch ) -> ch ) -> ch ) -> ( ( ps -> ch ) -> ch ) ) ) |
|
| 5 | tb-ax3 | |- ( ( ( ( ( ps -> ch ) -> ch ) -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ps -> ch ) -> ch ) ) |
|
| 6 | 4 5 | tbsyl | |- ( ( ( ps -> ch ) -> ( ( ps -> ch ) -> ch ) ) -> ( ( ps -> ch ) -> ch ) ) |
| 7 | 3 6 | tbsyl | |- ( ps -> ( ( ps -> ch ) -> ch ) ) |
| 8 | tb-ax1 | |- ( ( ph -> ( ps -> ch ) ) -> ( ( ( ps -> ch ) -> ch ) -> ( ph -> ch ) ) ) |
|
| 9 | tb-ax1 | |- ( ( ps -> ( ( ps -> ch ) -> ch ) ) -> ( ( ( ( ps -> ch ) -> ch ) -> ( ph -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) ) |
|
| 10 | 7 8 9 | mpsyl | |- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |